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Key Points: 22 

• Unique airborne data reveals elevated H2Ov mole fractions downwind of urban areas in 23 
winter months 24 

• Estimates of H2Ov emitted from fossil fuel combustion account for less than 10% of the 25 
observed H2Ov enhancement in the urban outflow 26 

• Combustion and evaporative cooling cannot account for the urban H2Ov excess, leaving 27 
enhanced urban evaporation as a plausible explanation  28 
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Abstract 29 

Elevated water vapor (H2Ov) mole fractions were occassionally observed downwind of 30 

Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance 31 

experiments conducted during winter months between 2012 and 2015. On days when an urban 32 

H2Ov excess signal was observed, H2Ov emissions estimates range between 1.6 × 104 and 1.7 × 33 

105 kg s-1, and account for up to 8.4% of the total (background + urban excess) advected flow of 34 

atmospheric boundary layer H2Ov from the urban study sites. Estimates of H2Ov emissions from 35 

combustion sources and electricity generation facility cooling towers are 1-2 orders of magnitude 36 

smaller than the urban H2Ov emission rates estimated from observations. Instances of urban H2Ov 37 

enhancement could be a result of differences in snowmelt and evaporation rates within the urban 38 

area, due in part to larger wintertime anthropogenic heat flux and land cover differences, relative 39 

to surrounding rural areas. More study is needed to understand why the urban H2Ov excess signal 40 

is observed on some days, and not others. Radiative transfer modeling indicates that the observed 41 

urban enhancements in H2Ov and other greenhouse gas mole fractions contribute only 0.1oC day-42 
1 to the urban heat island at the surface. This integrated warming through the boundary layer is 43 

offset by longwave cooling by H2Ov at the top of the boundary layer. While the radiative impacts 44 

of urban H2Ov emissions do not meaningfully influence urban heat island intensity, urban H2Ov 45 

emissions may have the potential to alter downwind aerosol and cloud properties.  46 
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1. Introduction 47 

Gradients in humidity between urban and rural environments have been observed for 48 

decades, with cities found to be both drier and more humid than surrounding rural areas 49 

depending on time of day or year [Kuttler et al., 2007; Liu et al., 2009; Hall et al., 2016]. In 50 

general, cities are expected to be drier during the day than surrounding rural areas [Arnfield, 51 

2003]. Soil and vegetation retain moisture and are capable of larger rates of evapotranspiration, 52 

in contrast to impervious urban surfaces like asphalt and concrete. Instances when urban 53 

atmospheric moisture levels are in excess of rural areas, referred to as urban moisture excess 54 

(UME), are often observed at night when urban heat islands (UHIs) are at their strongest, if dew 55 

point temperatures are reached in the surrounding rural area but not the city [Hage, 1975; 56 

Bornstein and Tam, 1977; Holmer and Eliasson, 1999; Deosthali, 2000; Kuttler et al., 2007]. 57 

Additionally, UME events have been observed during the daytime in mid-latitude cities during 58 

winter months [Hage, 1975; Ackerman, 1987], and in some cities throughout the year [Kuttler et 59 

al., 2007; Hall et al., 2016]. 60 

These gradients are frequently rooted in differences between urban and rural energy 61 

balance and moisture sources [Arnfield, 2003]. Faster rates of snowmelt and local advection-62 

assisted evapotranspiration have been reported in urban areas [Oke, 1979; Oke and McCaughey, 63 

1983; Oke et al., 1992; Bengtsson and Westerström, 1992; Neumann and Marsh, 1998; Moriwaki 64 

and Kanda, 2004]. Energy flux partitioning in urban areas is sensitive to the Bowen ratio (ratio 65 

of sensible to latent heat flux), which is low following precipitation events [Offerle et al., 2006; 66 

Ward et al., 2013; Ramamurthy et al., 2014; Ao et al., 2016]. Urban latent heat fluxes during the 67 

winter-spring transition can respond strongly to soil moisture thaw and snowmelt [Offerle et al., 68 

2006; Lemonsu et al., 2008; Leroyer et al., 2010]. However, suburban and urban areas within the 69 

same city can exhibit different relationships between latent heat flux and the physical state and 70 

availability of moisture on and within impervious and vegetated land cover [Bergeron and 71 

Strachan, 2012]. Direct anthropogenic emissions of heat and moisture from combustion sources, 72 

industry, and home heating and cooling have been reported to be significant [Hage, 1972; 73 

Grimmond, 1992; Moriwaki et al., 2008; Sailor, 2011; Gorski et al., 2015], and have also been 74 

implicated as contributors to UME [Hage, 1972, 1975; Bornstein and Tam, 1977; Ackerman, 75 

1987]. Bergeron and Strachan [2012] estimate that wintertime water vapor (H2Ov) emissions in 76 

Montreal exceed that of rural areas by over 50% due to combustion and sublimation/evaporation 77 
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of snow from roofs and roads, and Gorski et al. [2015] estimate that combustion H2Ov can 78 

account for up to 13% of surface-level H2Ov in Salt Lake City in winter.  79 

In addition to instances of UME, annual maxima in greenhouse gas (GHG) mole 80 

fractions, such as for carbon dioxide (CO2) and methane (CH4), are observed in mid-latitude 81 

cities in winter when energy consumption is high, vertical mixing is poor, and boundary layer 82 

heights are low [Christen, 2014; Energy Information Administration (EIA), 2015; McKain et al., 83 

2015; Moore and Jacobson, 2015]. Few studies have considered the impact of elevated mole 84 

fractions of H2Ov and other GHGs on urban temperatures by absorption and re-emission of 85 

longwave radiation [Oke et al., 1991; Holmer and Eliasson, 1999; McCarthy et al., 2010]. UHI 86 

formation has been temporally linked with UME [Holmer and Eliasson, 1999; Deosthali, 2000; 87 

Kuttler et al., 2007]. Studies that have quantified the radiative impacts of GHGs on UHI intensity 88 

have considered the effect of increasing longwave radiation by 40 Wm-2 (informed by urban 89 

observervations of the longwave contribution from GHGs) for idealized cities [Oke et al., 1991], 90 

as well as the impact of observed urban vapor pressure enhancements (3 hPa) on the Göteborg, 91 

Sweeden UHI [Holmer and Eliasson, 1999], and the impact of increasing average global CO2 92 

concentrations to 645 ppm on global megacity UHIs [McCarthy et al., 2010].  93 

Understanding how urban emissions of H2Ov and other GHGs influence the environment 94 

is important, as cities, despite covering only 3% of the Earth’s land surface, are responsible for 95 

70% of global CO2 emissions and house 54% of the world’s population, with these numbers 96 

projected to grow in the coming decades [Center for International Earth Science Information 97 

Network, 2011; United Nations, 2011; World Health Organization, 2016]. A positive 98 

atmospheric H2Ov feedback exists in response to increased CO2 concentrations, with models 99 

suggesting H2Ov is responsible for a significant portion of warming via radiative effects [Rind et 100 

al., 1991; Willet et al., 2007]. Furthermore, it has been shown that atmospheric concentrations of 101 

H2Ov are increasing and influence the rate of warming [Solomon et al., 2010; Chung et al., 102 

2014]. However, questions still remain about local scale influences of H2Ov emissions, and their 103 

magnitude.  104 

Urban H2Ov excess emissions could influence aerosol properties and the associated 105 

population of cloud condensation nuclei (CCN) which could also modify cloud cover and 106 

weather downwind of urban areas [Mölders and Olson, 2004; Kreidenweis et al., 2005; Bréon, 107 

2006; Rosenfeld et al., 2008; Trusilova et al., 2008; Twohy et al., 2009; Kourtidis et al., 2015]. In 108 
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addition to regional effects on cloud cover and water cycling, enhanced H2Ov mole fraction 109 

impacts the liquid water content of aerosols. As discussed in recent publications, aerosol liquid 110 

water content has a significant impact on the processing of pollutants that partition to the aerosol 111 

phase, or the evolution of secondary organic aerosol (SOA) and climate-relevant aerosol 112 

properties [Carlton and Turpin, 2013; Hodas et al., 2014; Guo et al., 2015; Nguyen et al., 2015; 113 

Rindelaub et al., 2015].  114 

Here we discuss our airborne case studies of elevated H2Ov mole fractions observed 115 

downwind of (1) the Washington, D.C.- Baltimore, MD, metropolitan area (D.C.-Balt), collected 116 

as part of the Wintertime Investigation of Emissions, Reactivity, and Transport (WINTER) and 117 

Fluxes of Atmospheric Greenhouse Gases in Maryland (FLAGG-MD) campaigns, and (2) 118 

Indianapolis, IN, as part of the ongoing Indianapolis Flux Experiment (INFLUX). Unlike past 119 

studies that have reported urban H2Ov excess by comparing measurements from tower sites or 120 

surface-mobile traverses [Hage, 1975; Holmer and Eliasson, 1999; Deosthali, 2000; Richards, 121 

2005; Kuttler et al., 2007; Liu et al., 2009; Hall et al., 2016], this study represents the first 122 

reported observations and quantification of city-wide enhancements in H2Ov mole fractions 123 

during daytime. Additionally, we report emission rates of urban-derived H2Ov from our mass 124 

balance experiments conducted in the two cities, and discuss possible sources. We test the 125 

hypothesis that elevated H2Ov, CO2, and CH4 mole fractions within an urban center influence the 126 

UHI via direct radiative effects, and discuss potential impacts of urban H2Ov emissions on areas 127 

within and downwind of cities.  128 
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2. Methods 129 

2.1. Site Description 130 

Airborne experiments were conducted above D.C.-Balt, the urban area centered around 131 

the cities of Washington, D.C. (38.905oN, 77.016oW) and Baltimore, MD (39.288oN, 76.617oW), 132 

on 13, 19, 20, 23, 25, 27 February and 9, 12 March, 2015 as part of the WINTER and FLAGG-133 

MD campaigns. D.C.-Balt is a U.S. Census Bureau-defined Combined Statistical Area, and has a 134 

population of approximately 9.63 million [U.S. Census Bureau, 2016]. The population density 135 

across D.C.-Balt is spatially variable. The most densely populated areas, at 3806 persons km-2 136 

and 2174 persons km-2, are within the city boundaries of Washington, D.C. and Baltimore, MD, 137 

respectively, [US Census Bureau, 2010]. The urban study site is surrounded by rural land use to 138 

the north and south. The Appalachian Mountains lie to the west, and the Chesapeake Bay and 139 

Atlantic Ocean lie to the east of the urban area. Northwest winds were commonly observed 140 

during the D.C.-Balt flights, which is in line with long-term observations of wintertime winds in 141 

the area [Berg and Allwine, 2006]. The Washington National Airport reported average 142 

temperatures and winds speeds of -0.4oC and 4 m s-1, respectively, during the study period. 143 

Airborne observations of urban carbon monoxide, sulfur dioxide, nitrogen dioxide (NO2), ozone, 144 

and aerosol emissions from the D.C.-Balt area have been previously discussed [He et al., 2014; 145 

2016; Brent et al., 2015]. 146 

 Airborne experiments conducted by Purdue University in Indianapolis, IN (39.791oN, 147 

86.148oW) have been ongoing since 2008 as part of the INFLUX campaign. Indianapolis and its 148 

surrounding urban/suburban sprawl have a population of approximately 1.99 million [US Census 149 

Bureau, 2016], and the population density is 914 persons km-2 [US Census Bureau, 2010]. The 150 

Indianapolis flight experiments discussed herein were conducted in November of 2012 and 2014. 151 

The average monthly temperature in Indianapolis in November over these years was 4oC, and 152 

winds were from the southwest at 4 m s-1 on average, as archived by the National Weather 153 

Service. Given its isolation from other urban areas, and its relatively simple meteorology and 154 

topography, Indianapolis is an ideal test bed for the development and evaluation of methods to 155 

quantify urban emissions from densely populated urban environments. Emissions of CO2 and 156 

CH4 from Indianapolis are discussed in Mays et al. [2009], Cambaliza et al. [2014, 2015], 157 

Lauvaux et al. [2016], and Heimburger et al. [2017].  158 
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 159 

2.2. Aircraft Instrumentation 160 

The two airborne platforms used to quantify GHG emissions from the urban areas were: 161 

Purdue University’s Airborne Laboratory for Atmospheric Research (ALAR; 162 

http://science.purdue.edu/shepson/research/bai/alar.html) and the UMD’s Cessna 402B research 163 

aircraft (http://aosc.umd.edu/~flaggmd/). Emission rates of urban H2Ov excess for D.C.-Balt are 164 

estimated from data collected by both aircraft. Emission rates for Indianapolis are estimated from 165 

data collected by the ALAR. Table S1 is a flight log that details the date, city, aircraft, low and 166 

high temperature, and prior precipitation for all the flights discussed in this text. Purdue’s ALAR 167 

and the UMD Cessna flew a coordinated flight (here on referred to as the inter-comparison 168 

flight) on 19 February 2015. The inter-comparison flight was designed for periods of the 169 

experiment to be flown in unison for measurement comparison. Figure S1 shows the ALAR and 170 

the UMD Cessna measurements of winds, temperature, pressure, and H2Ov mole fraction 171 

(expressed as mmol mol-1) for a period of the inter-comparison flight in which the aircraft were 172 

flying parallel to one another, spaced ~1 km apart, and flying at the same altitude with their 173 

heading oriented perpendicular to the mean wind direction. 174 

 175 

2.2.1. Purdue University’s Airborne Laboratory for Atmospheric Research 176 

Purdue’s ALAR is a modified light twin-engine Beechcraft Duchess aircraft equipped 177 

with a Best Air Turbulence (BAT) probe for high frequency (50 Hz) three-dimensional wind 178 

measurements [Crawford and Dobosy, 1992; Garman et al., 2006] installed at the nose of the 179 

aircraft. Temperature was measured using a Fast Ultra-Sensitive Temperature (FUST) probe 180 

installed on the underside of the BAT probe [Garman et al., 2006]. Flight tracks were recorded 181 

using a global positioning system (GPS) and inertial navigation system (INS). During the course 182 

of the D.C.-Balt flights, the ALAR was equipped with several gas and aerosol analyzers 183 

including: (1) a Picarro G2301-m cavity ring-down spectrometer (CRDS) for 0.5 Hz CO2, CH4, 184 

and H2Ov measurements, (2) a Los Gatos Research (LGR) off-axis integrated cavity output 185 

spectrometer (OA-ICOS) for 1 Hz NO2 measurements, and (3) an aerosol spectrometer (model 186 

1.109, GRIMM Technologies, Inc., Douglasville, GA) for measurements (6 second intervals) of 187 
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particle concentration of diameters from 0.25 to 32 µm. The NO2 and aerosol analyzers were not 188 

installed in ALAR at the time of the Indianapolis flight experiments reported here. 189 

Instrumentation was housed in a ~1 m3 volume in the back of the aircraft. A blower installed at 190 

the rear of the aircraft pulled ambient air from the inlet at the nose of the aircraft through 5 cm 191 

Teflon tubing at a flow rate of 1840 L min-1. 192 

For Indianapolis flights, the ALAR Picarro CRDS was calibrated with an in-flight 193 

calibration system using National Oceanographic and Atmospheric Association (NOAA) Earth 194 

System Research Laboratory analytical standards. For D.C.-Balt flights, the ALAR Picarro 195 

CRDS was calibrated according to a Purdue-UMD cross-calibration with analytical CO2 and CH4 196 

standards from the National Institute of Standards and Technology (NIST).  For continuity, 197 

Purdue and UMD Picarro CRDS data collected during D.C.-Balt flights were calibrated using 198 

NIST standards. After the WINTER campaign, a dew point generator (model LI-610, LiCor Inc., 199 

Lincoln, NE) was used to compare saturation mole fractions to the CRDS H2Ov measurements. 200 

The dew point generator has a reported precision of ±0.01oC for dew point temperature set point. 201 

This equates to a maximum variability of ±8 × 10-3 mmol mol-1 in saturation mole fractions for 202 

the dew point temperatures measured. The CRDS-reported H2Ov mole fractions were ~8% lower 203 

than the saturation mole fractions for the set dew point temperatures. Purdue H2Ov measurements 204 

were not calibrated for continuity with the UMD H2Ov measurements (Figure S1). The Picarro 205 

G2301-m instrument has a measured precision of 0.03 ppm and 0.5 ppb for CO2 and CH4, 206 

respectively (standard deviations (1σ) of 0.5 Hz data over five minutes), for atmospherically 207 

relevant trace species mole fractions from dry analytical standards. The measured precision for 208 

H2Ov when sampling humid air from the dew point generator is 3 × 10-2 mmol mol-1 for relevant 209 

ambient H2Ov mole fractions. This value is a combination of the precision of the dew point 210 

generator output (maximum variability of ±8 × 10-3 mmol mol-1) and the CRDS instrument 211 

precision. 212 

 213 

2.2.2. University of Maryland’s Cessna 402B Research Aircraft 214 

The UMD operated a Cessna 402B research aircraft equipped with an instrument package 215 

to measure gaseous and particle pollutants [He et al., 2014, 2016]. Separate inlets for gases and 216 
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particles, as well as temperature and humidity sensors were installed at the nose of the aircraft. 217 

Temperature, humidity, and pressure were measured using a Vaisala probe (Model PTU300, 218 

Vaisala Inc., Woburn, MA).  Flight tracks were recorded using a handheld GPS and an aircraft 219 

INS. Horizontal two-dimensional wind speed was calculated by a Garmin G600 system using 220 

information from an INS, GPS, and an air data computer (Model GTN650, Garmin, Chicago, 221 

IL). The UMD Cessna research aircraft was equipped with a suite of trace gas and aerosol 222 

analyzers. Those relevant to this study include a Picarro G2401-m CRDS for 0.5 Hz CO2, CH4, 223 

CO and H2Ov measurements, and an LGR OA-ICOS for 1 Hz NO2 measurements [Brent et al., 224 

2015]. 225 

For the flights in D.C.-Balt, the UMD Picarro CRDS was calibrated both on the ground 226 

and in the air with analytical standards from NIST. The Picarro G2401-m instrument has 227 

measured precisions of 0.02 ppm for CO2, 0.2 ppb for CH4, and 4 ppb for CO (standard 228 

deviations (1σ) of 0.5 Hz data over five minutes) for atmospherically relevant trace species mole 229 

fractions measured from dry analytical standards. The manufacturer-reported H2Ov precision is 1 230 

× 10-2 mmol mol-1 for humid air samples. 231 

 232 

2.3. Mass Balance Flight Design 233 

Airborne mass balance experiments were performed with the Purdue and the UMD 234 

aircraft to quantify citywide GHG emissions from Indianapolis and D.C.-Balt [Trainer et al., 235 

1995; Kalthoff et al., 2002; Mays et al., 2009; Karion et al., 2013, 2015; Gioli et al., 2014; 236 

O’Shea et al., 2014; Petron, et al., 2014; Cambaliza et al., 2014, 2015; Lavoie, et al., 2015; 237 

Heimburger et al., 2017]. Alternative airborne methods for estimating urban fluxes of energy, 238 

greenhouse gases, and other anthropogenic pollutants have been reported [Font et al., 2015; Karl 239 

et al., 2009; Trousdell et al., 2016; Vaughan et al., 2016]. In an airborne mass balance 240 

experiment, transects are flown upwind and downwind of an emission source, D.C.-Balt or 241 

Indianapolis, and the emission rate of the species of interest, H2Ov, is calculated from the urban 242 

enhancement in mole fraction relative to background and the perpendicular component of the 243 

wind speed relative to the flight track. Figure 1a-b shows the ALAR’s flight path and altitude, 244 

respectively, during the 27 February 2015 D.C.-Balt mass balance flight. The 27 February 2015 245 
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flight is used throughout the paper as a representative example of an urban mass balance flight 246 

for which an urban H2Ov excess signal is observed. Flight paths from the remaining mass balance 247 

flights are provided in Figure S2. All flights commenced at approximately noon to minimize 248 

atmospheric boundary layer growth throughout the duration of the flight [Stull, 1988], consistent 249 

with our observations. Typically, a vertical profile was flown on the upwind side of the city to 250 

characterize the atmospheric boundary layer, followed by an upwind transect to measure the 251 

H2Ov mole fraction entering the study area. Next, downwind transects were flown at different 252 

altitudes approximately equally spaced throughout the boundary layer, (Figure 1b). Downwind 253 

transects were conducted approximately 30 km and 70 km from the center of Indianapolis and 254 

D.C.-Balt, respectively. Downwind transect locations are chosen so that emissions have time to 255 

mix through the boundary layer. While this results in a lower uncertainty in the calculated 256 

results, our analysis makes no assumptions about a well-mixed boundary layer. The locations of 257 

D.C.-Balt downwind transects were also in part dictated by flight restrictions. The number of 258 

downwind transects completed in each flight was dependent on city size and the time available 259 

before the atmospheric boundary layer became stable. The downwind transects were designed to 260 

extend several tens of kilometers beyond the horizontal bounds of the urban area to ensure 261 

complete sampling of the urban plume, and appropriate sampling of background H2Ov mole 262 

fractions at the lateral edges of the downwind transects. For most flights, a second vertical 263 

profile was flown downwind of the city to determine boundary layer depth evolution, as well as 264 

characterize vertical mixing downwind of the metropolitan area. 265 

 266 

2.4. Background Determination 267 

One of the objectives of this study is to determine urban emission rates of H2Ov in excess 268 

of the surrounding rural area. A background concentration serves as a reference for determining 269 

the incremental urban enhancement in H2Ov mole fraction, and is ideally representative of air not 270 

influenced by the urban area, but of the same air mass as the air sampled downwind of the urban 271 

center. To determine the incremental urban enhancement in H2Ov relative to the surrounding 272 

rural areas, background H2Ov mole fractions were defined from air sampled along the lateral 273 

edges of the downwind transects where mole fractions are relatively constant, and are likely a 274 
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result of rural influence only. This approach has been used in aircraft mass balance experiments 275 

to quantify CH4 and CO2 emissions from cities and natural gas fields [Cambaliza et al., 2014, 276 

2015; Karion et al., 2015; Heimburger et al., 2017]. Measurements of H2Ov mole fraction made 277 

along upwind transects were used to identify spatial variability in H2Ov mole fraction entering 278 

the study areas. 279 

Figure 2 shows the urban H2Ov plume intercepted downwind of D.C.-Balt on 27 February 280 

2015 (plume profiles from the remaining flight days are shown in Figure S2). A line (cyan in 281 

Figure 2) connecting the baseline H2Ov mole fractions at either ends of the transects defines the 282 

background mole fraction at each data point sampled along the urban plume. Downwind 283 

transects were flown well past the boundaries of the urban area, so that air sampled near transect 284 

ends did not pass over urbanized areas, and were thus representative of background (rural) mole 285 

fractions at the time and location the downwind transect was flown. We define the transition 286 

from rural-influenced air to urban-influenced air as the location that the downwind H2Ov mole 287 

fractions are greater than the background mole fraction plus three times the standard deviation of 288 

the background. The standard deviation in H2Ov mole fraction along the upwind transect is used 289 

as a proxy for defining the standard deviation of the background, assuming that variability in 290 

H2Ov mole fraction along the upwind transect would be similar to the variability in downwind 291 

H2Ov mole fraction not influenced by the urban area. This criterion (background plus three 292 

standard deviations of the background) is also used for determining if an urban H2Ov excess 293 

signal exists (as indicated in Table S1).  294 

H2Ov mole fractions observed upwind of the urban areas (red trace in Figure 2) were 295 

often similar in magnitude to the linear, transect-edge-defined background (cyan trace in Figure 296 

2). Instances when transect-edge-defined background H2Ov mole fractions were higher or lower 297 

relative to upwind mole fractions could indicate that the surrounding rural area acted as a source 298 

of moisture or there was entrainment of drier free tropospheric air, respectively. We have 299 

previously determined that upwind transects do not provide a reliable background measurement 300 

for mass balance experiments, but rather, that the rural edges of the downwind transects provide 301 

a more reliable background, in part because the measurements on the transect edges are 302 

conducted closer in time to urban plume sampling [Cambaliza et al., 2014, Karion et al., 2015, 303 

Heimburger et al., 2017]. Measurements of background mole fraction for all flights when an 304 
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urban H2Ov excess signal was observed are explained in detail in the captions of Figure S2.1-7 in 305 

the Supporting Information (SI). 306 

 307 

2.5. Emission Rate Calculation 308 

To quantify the emission rate of urban H2Ov excess from D.C.-Balt and Indianapolis, the 309 

flux, 𝐹"#$%&,(), of urban H2Ov excess is calculated at each downwind data point (unique distance 310 

along the downwind track (i) and altitude (j)), according to Equation 1. 311 

 𝐹"#$%&,() = 𝑈,,() ∙ (𝐻0𝑂234,() − 𝐻0𝑂2$6,()) (1) 312 

For Equation 1, reported H2Ov mole fractions have been converted to molar density (mol m-3) 313 

using the ideal gas law, and simultaneous pressure and temperature measurements (an expanded 314 

form of Equation 1 is in the SI). The background mole fraction (Section 2.4), 𝐻0𝑂2$6,(), is 315 

subtracted from the corresponding downwind H2Ov mole fraction, 𝐻0𝑂234,(), giving an urban 316 

enhancement in H2Ov. The  H2Ov enhancement is multiplied by the perpendicular component of 317 

the wind speed (50 Hz winds averaged over 10 seconds), 𝑈,,() (m s-1). The result is an urban 318 

H2Ov excess flux (mol m-2 s-1), 𝐹"#$%&,(), calculated at each data point sampled downwind of the 319 

urban center as shown in Figure 3. 320 

To determine the percent contribution of urban-derived H2Ov to the total transport 321 

(background + urban excess) of atmospheric boundary layer H2Ov exiting the urban area, the 322 

total H2Ov flux, 𝐹89:%;,(), at any point is calculated according to Equation 2. Equation 2 is 323 

identical to Equation 1, except that a background mole fraction, 𝐻0𝑂2$6,(), is not subtracted from 324 

the downwind H2Ov mole fractions, 𝐻0𝑂234,().  325 

 𝐹89:%;,() = 𝑈,,() ∙ 𝐻0𝑂234,() (2) 326 

The flux values defined at each downwind point, 𝐹"#$%&,() and 𝐹89:%;,(),  are used as 327 

inputs to a kriging program (MATLAB EasyKrig3.0) to interpolate/extrapolate a two-328 

dimensional x-z plane, or matrix, of downwind H2Ov fluxes, 𝑀"#$%& or 𝑀89:%;	[Mays et al., 329 

2009; Cambaliza et al., 2014, 2015]. The flux matrices are gridded at a resolution of 100 m (x 330 
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dimension) x 10 m (z dimension), from the surface to the top of the boundary layer. We define 331 

boundary layer depth (zi) as the altitude along the vertical profile associated with the greatest 332 

change in potential temperature (maximum dθ/dz, where θ is potential temperature) [Cambaliza 333 

et al., 2014]. Vertical profiles with indicated boundary layer height for each day are provided in 334 

the SI. The citywide H2Ov emission rate, 𝐸𝑅"#$%& (mol s-1; reported in units of kg s-1), is 335 

calculated by integrating the urban H2Ov excess flux matrix, 𝑀"#$%&, across the horizontal 336 

bounds of the city, and vertically from the surface to the top of the boundary layer (zi) according 337 

to Equation 3: 338 

 𝐸𝑅"#$%&	9#	89:%; = 𝑀"#$%&	9#	89:%;
@A
BA 𝑑𝑥	𝑑𝑧FG

H  (3) 339 

 Similarly, the total H2Ov transport emission rate (𝐸𝑅89:%;) is calculated according to 340 

Equation 3 by integrating over the total H2Ov flux matrix, 𝑀89:%;. In principle, the uncertainty in 341 

the ratio of urban H2Ov excess to the total H2Ov transport through the study area 342 

(𝐸𝑅"#$%&: 𝐸𝑅89:%;) would be smaller than the uncertainty of the individual emission rates 343 

because the wind speed and kriging uncertainties would be effectively canceled. An uncertainty 344 

analysis of the mass balance emission rate calculation is provided in the SI.   345 
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3. Results and Discussion 346 

3.1. Urban H2Ov Enhancements and Emission Rates 347 

An elevated urban H2Ov signal was observed on five (13 February, 20 February, 27 348 

February, 9 March, and 12 March 2015) of the eight flights conducted around D.C.-Balt. An 349 

urban H2Ov excess signal was not observed on 19 February, 23 February, or 25 February 2015 in 350 

D.C.-Balt. Figure S4 shows flight paths and observations of upwind and downwind H2Ov mole 351 

fractions for these days. Between March 2011 to December 2014, an urban H2Ov excess signal 352 

was observed on two of 16 mass balance flights conducted in Indianapolis during non-growing 353 

season months (November through March). 354 

The magnitude of the urban H2Ov signal varied by day and, for some flights, by altitude 355 

depending on the extent of vertical mixing within the boundary layer. The boundary layer 356 

downwind of D.C.-Balt was poorly mixed on 27 February 2015 as the magnitude of the H2Ov, 357 

CO2, CH4, NO2, and aerosol plumes are altitude dependent (Figure 2; Figure 4a-e). The highest 358 

downwind transect conducted on 27 February 2015 is shorter than the lower two downwind 359 

transects (Figure 2-4) because the aircraft had to stop to refuel. Data collected after refueling 360 

(Figure 1b) on 27 February 2015 is not used in our analysis because large variability in H2Ov and 361 

other GHG mole fractions was observed along the remainder of the final downwind transect. 362 

This variability is characteristic of mixed layer decay observed in late afternoon or early evening 363 

[Acevedo and Fitzjarrald, 2001; Lothon et al., 2014].The maximum urban enhancement in H2Ov 364 

mole fraction, 1.5 mmol mol-1, was observed on the lowest downwind transect (390 m above sea 365 

level (msl)) of the 27 February 2015 flight. The maximum enhancement in H2Ov mole fraction 366 

ranged between 0.24 mmol mol-1 – 1.5 mmol mol-1 for the five D.C.-Balt flights. An urban H2Ov 367 

excess signal of 0.72 mmol mol-1and 0.65 mmol mol-1 was observed on two mass balance flights 368 

conducted in Indianapolis on 8 November 2012 and 25 November 2014, respectively. Both the 369 

presence and magnitude of the urban H2Ov excess signals in D.C.-Balt and Indianapolis 370 

exhibited inter-day variability, and were not necessarily proportional to city size (e.g. the 371 

observed Indianapolis H2Ov excess signals were sometimes greater than the D.C.-Balt signals). 372 

Maximum urban H2Ov enhancements for the D.C.-Balt and Indianapolis flights can be found in 373 

Table 1. 374 

Urban emission rates, calculated according to Equations 1 and 3, ranged from 1.6 (±0.66) 375 

× 104 – 1.7 (±0.81) × 105 kg H2Ov s-1 for D.C.-Balt and 2.1 (±1.2) × 104 – 3.5 (±1.4) × 104 kg 376 
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H2Ov
 s-1 for Indianapolis. Urban H2Ov excess emission rates are reported in Table 1. 377 

Uncertainties associated with the calculation of citywide emission rates were estimated on 378 

average to be 46% (1σ; range: 39% - 59%), and are discussed in the SI. The percent contribution 379 

of urban H2Ov excess to the total flow (background + urban excess; discussed in Methods 380 

Section 2.5) of atmospheric boundary layer H2Ov out of the study areas range from 1.5 – 8.4% 381 

(average: 4.1%) for the D.C.-Balt flights, and average 2.8% for the Indianapolis flights (Table 1).  382 

It is important to note that this range of emission rates is not representative of every mass 383 

balance flight flown around the D.C.-Balt and Indianapolis areas, rather the range corresponds 384 

only to days when an urban H2Ov excess was observed. Our observations of urban H2Ov excess 385 

occurred during winter, when transpiration rates and saturation vapor pressure are lower than in 386 

summer months. During this time period, urban H2Ov excess signals may be easier to observe 387 

relative to the noise, or natural variability in H2Ov mole fractions. There were three of eight 388 

D.C.-Balt flight days and 14 of 16 Indianapolis mass balance flights on which the downwind 389 

H2Ov mole fractions were approximately equal to, or less than, the observed upwind H2Ov mole 390 

fractions. Sisterson and Dirks [1978] measured lower specific humidity values along airborne 391 

transects downwind of St. Louis, Missouri in summertime, relative to upwind transects. Sisterson 392 

and Dirks [1978] hypothesize decreased rates of evapotranspiration within the city and UHI-393 

induced entrainment contributed to lower downwind specific humidity.  394 

 395 

3.2. Spatial Correlation with Anthropogenic Pollutants 396 

Figure 4a-e shows that the plume shapes and widths of the other anthropogenic species, 397 

CO2, CH4, NO2, and aerosol number concentration, respectively, track the urban H2Ov plume. 398 

Periods without NO2 data in Figure 4d correspond to times the analyzer was performing five-399 

minute-long internal zeroes (every 30 minutes of sampling). Similar urban plume shapes of H2Ov 400 

and other anthropogenic species were observed during the other D.C.-Balt flights (Figure S2.3-401 

7). Additionally, the most intense H2Ov peak observed downwind of the D.C.-Balt area on 27 402 

February 2015 is co-located with the urban aerosol plume and the greatest aerosol concentrations 403 

as shown in Figure 4f-g. Aerosol number concentration increased three to fourfold after passing 404 

over D.C.-Balt, with little growth observed in aerosol diameter (Figure 4f-g). Hygroscopic 405 

aerosol with diameters greater than ~0.1 µm can act as CCN, and elevated aerosol concentrations 406 

can produce smaller and more numerous droplets that take longer to grow to precipitation size 407 
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droplets under constant moisture conditions, impacting cloud optical properties and precipitation 408 

yield and frequency [Kreidenweis et al., 2005; Bréon, 2006]. However, if aerosol emissions are 409 

collocated with H2Ov emissions, as indicated by the present observations (Figure 4a, e-g), 410 

moisture conditions would not be constant, and may counteract aerosol-delayed precipitation 411 

[Rosenfeld et al., 2008]. Indeed, it has also been shown that H2Ov can have a stronger impact on 412 

cloud cover than aerosol optical depth [Kourtidis et al., 2015].  413 

The downwind enhancements of the combustion products CO2, H2Ov, and NO2 were 414 

atmospherically correlated (Pearson correlation coefficient of 0.83 for CO2 and H2Ov) during the 415 

27 February 2015 flight (Figure 5). This correlation was also observed for three of the other 416 

D.C.-Balt flights, but to a lesser extent (r = 0.41 – 0.50). There was one D.C.-Balt flight day, 9 417 

March 2015, where no correlation (r = 0.1) was observed. Figure S5 shows correlation plots of 418 

combustion product enhancements for the remaining D.C.-Balt flight days when an urban H2Ov 419 

excess signal was observed. This implies that the urban H2Ov excess is frequently associated 420 

spatially and temporally with anthropogenic activities within D.C.-Balt. While the observed 421 

urban plumes of H2Ov, CO2, CH4, NO2, and aerosol track a similar shape (Figure 4a-e) on 27 422 

February 2015 in D.C.-Balt, and H2Ov, CO2, and NO2 enhancements show correlation of varying 423 

strengths (Figure 5, S5) data from the Indianapolis flights do not always suggest an equally 424 

strong spatial correlation between these species. Figure 6a-c shows urban plume profiles of 425 

H2Ov, CO2, and CH4, respectively, from the 8 November 2012 flight in Indianapolis (flight path 426 

shown in Figure S2.1a). The urban H2Ov plume was observed to be slightly broader, and did not 427 

exhibit the same double peak profile of the CO2 and CH4 plumes during the 8 November 2012 428 

flight. Similarly, the H2Ov plume observed on the 25 November 2014 flight is offset to the south 429 

of the CH4 and CO2 plumes (Figure 6d-f, respectively; flight path shown in Figure S2.2a). In the 430 

case of the observations from 25 November 2014, it appears that the urban H2Ov plume is 431 

originating from the southern outskirts of Indianapolis, which is primarily suburban. The largest 432 

CO2 and CH4 plumes appear to originate slightly south of central Indianapolis, likely as a result 433 

of emissions from the city’s power plant and landfill, which are located in the southwest part of 434 

the city. Potential reasons for differences in observed spatial relationships between these 435 

atmospheric species of urban origin are discussed in Section 3.3.3. 436 
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 437 

3.3. Sources and Impacts of Urban H2Ov Excess 438 

Below we discuss sources and conditions likely contributing to the enhancement in H2Ov 439 

mole fractions observed downwind of the D.C.-Balt and Indianapolis areas, including direct 440 

anthropogenic moisture sources such as combustion and evaporative cooling, moisture 441 

contributions from local bodies of water, which we believe to be negligible, and finally, 442 

differences in urban and rural evaporation rates. Lastly, we consider the radiative impact of 443 

elevated H2Ov and GHG mole fractions on the urban boundary layer, more specifically UHI 444 

intensity. 445 

 446 

3.3.1. Direct Anthropogenic Sources 447 

Combustion sources have been identified as a major wintertime contributor to urban 448 

moisture in mid-latitude cities, contributing up to 13% of surface-level moisture during inversion 449 

periods in Salt Lake City, UT, and causing urban low-temperature fog in Edmonton, Alberta, 450 

Canada [Hage, 1972, 1975; Ackerman, 1987; Gorski et al., 2015]. To estimate the contribution 451 

of H2Ov from combustion sources, CO2 emission rates calculated according to the procedure 452 

described in the Methods Sections 2.4-5, were multiplied by a H2Ov:CO2 combustion ratio 453 

weighted for the fossil fuel use distribution in the D.C.-Balt area [EPA, 2015; EIA, 2015]. The 454 

calculation of the consumption-weighted H2Ov:CO2 combustion ratio, estimated to be 455 

approximately 1.2 H2O:1 CO2, is discussed in the SI. Heating and electricity generation via fossil 456 

fuel combustion (electricity generation from nuclear power is also significant in the area) in the 457 

D.C.-Balt study area is mainly achieved through the burning of coal and natural gas. Petroleum is 458 

rarely used for heating or electricity generation in the area, and is mainly consumed by the 459 

transportation sector after it has been processed into gasoline [EIA, 2016a]. The magnitude of the 460 

combustion-derived H2Ov emission rates, presented as ERCombustion in Table 2, appear to be 461 

inversely proportional to temperature, as we expect in the winter due to increased fossil fuel 462 

consumption for space-heating. Also presented in Table 2 is the contribution of combustion-463 

derived H2Ov to the urban H2Ov excess signal, which was estimated to range from 1.0-9.6%. 464 

However, the maximum contribution of combustion-derived H2Ov to the total flow of H2Ov 465 
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exiting the study area is negligible, with a maximum contribution of ~0.32%. Similar to our 466 

analysis, Kalanda et al. [1980] report high urban latent heat fluxes, but estimate the maximum 467 

combustion-derived H2Ov contribution to be at least an order of magnitude lower than the 468 

observed latent heat fluxes. Given our combustion-derived H2Ov estimates, it is likely that the 469 

observed correlation between combustion products CO2, H2Ov, and NO2 shown in Figure 5 (and 470 

Figure S5a,b,d) represents spatial coherence between combustion sources and the sources of 471 

urban-derived H2Ov in D.C.-Balt on some days. The observed combustion product correlation on 472 

9 March 2015 (Figure S5c) does not show as strong a relationship as the other D.C.-Balt days. 473 

Additionally, the plume shapes of H2Ov and CO2 from Indianapolis in Figure 6 do not track one 474 

another, indicating that combustion sources are not the dominant source of urban H2Ov excess 475 

for these days. 476 

In addition to the H2Ov produced from combustion reactions, the other main form of 477 

direct anthropogenic moisture is from the phase change associated with evaporative cooling 478 

equipment [Sailor, 2011]. Evaporative cooling from air conditioning systems was implicated as 479 

the major contributor to large summertime latent heat fluxes in Tokyo, Japan by Moriwaki et al. 480 

[2008].  However, the authors report winter urban latent heat fluxes to be nearly two orders of 481 

magnitude lower than their summer estimates. Evaporative cooling towers from energy 482 

generating stations are sources of direct anthropogenic moisture throughout the year. Latent heat 483 

flux contributions from cooling towers are often not included in urban energy balance modeling 484 

because there are few quantitative reports on their contribution, and these estimates tend to be 485 

small [Grimmond et al., 2010]. Cooling tower plume dispersion models have been evaluated 486 

with empirical data collected by the EPA and United States national labs during the 1970s 487 

[Meroney, 2006; Ruiz et al., 2013]. Stockham [1971] reports periodic H2Ov emissions over a 488 

four-month period from the cooling towers of a coal-fired 1,800 MW electricity generation 489 

facility. From the data reported by Stockham [1971], the linear relationship (R2 = 0.983, N=11) 490 

between the cooling tower H2Ov emission rate and the capacity at which the facility was 491 

operating was determined to be 4.1 g H2Ov s-1 MW-1 for every percent of operating capacity. 492 

Orville et al. [1981] simulated emissions to be 2.5 × 104 kg H2Ov s-1 from a 48,000 MW power 493 

park using an unspecified fuel source. Hane [1978] simulated slightly higher emissions, 3 × 104 494 

kg H2Ov s-1, from a nuclear plant, but did not specify the plant’s power output. The power plants 495 

within the D.C.-Balt study area were capable of collectively generating ~15,700 MW of power 496 
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during Winter 2015, and the primary fuel source was coal for most of the facilities [EIA, 2016b]. 497 

By applying the operating capacity-emission rate relationship observed by Stockham [1971] to 498 

the D.C.-Balt electricity generating facilities, we estimate the cooling towers within the study 499 

area would emit ~6.5 × 103 kg H2Ov s-1 if operating at full capacity. Similarly, scaling Orville et 500 

al. [1981]’s emissions by power output for the D.C.-Balt facilities results in a maximum 501 

emission rate of 8.2 × 103 kg H2Ov s-1. Averaging the cooling tower emission estimates based on 502 

Stockham [1971] and Orville et al. [1981] gives a maximum collective cooling tower emission 503 

rate of 7.4 × 103 kg H2Ov s-1 for D.C.-Balt. Repeating this calculation for the energy generating 504 

facilities’ cumulative power output of 1,400 MW in Indianapolis, gives a maximum cooling 505 

tower emission rate of 6.7 × 102 kg H2Ov s-1. Given these operating conditions, cooling tower 506 

H2Ov emissions could contribute up to ~43% of the urban excess H2Ov signal for the D.C.-Balt 507 

flight day with the smallest observed emission rate, 1.60 × 104 kg s-1 on 13 February 2015. 508 

However, assuming the same operating conditions, cooling tower H2Ov emissions would only 509 

contribute ~4% to the maximum observed urban excess H2Ov emission rate of 1.68 × 105 kg s-1 510 

on 27 February 2015 in D.C.-Balt. Similarly, cooling tower emissions from energy generating 511 

facilities operating at full capacity in Indianapolis would only contribute approximately 3% and 512 

2% to the urban H2Ov excess signal observed on 8 November 2012 and 25 November 2014, 513 

respectively. Maximum cooling tower emission rate estimates and their contribution to the 514 

observed urban H2Ov excess signals are provided in Table 2. 515 

 516 
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3.3.2. Contribution from Local Bodies of Water 517 

Due to the proximity of the D.C.-Balt area to the Atlantic Ocean, it is possible that moist 518 

air parcels originating from the sea-breeze were sampled aloft on their return circulation toward 519 

the ocean [Stull, 1988]. However, moist sea-breeze air would likely contribute to humidity levels 520 

equally along the coast, and not contribute preferentially to urban air than rural air. A sea-breeze 521 

circulation was not observed on 27 February 2015, as the wind direction measured along the 522 

lowest (390 msl) downwind transect originated from the northwest (Figure S6), nor was it 523 

observed during the other D.C.-Balt flight days.  524 

The Chesapeake Bay, across which downwind transects were sometimes flown, was 525 

frozen for the majority of the WINTER field campaign (Figure S7). We note that the vapor 526 

pressure of ice is only slightly lower than that of liquid water at the same temperature. We 527 

believe it is unlikely that there was a significant contribution of moisture from the Chesapeake 528 

Bay considering the well-defined H2Ov plumes intercepted directly downwind of the D.C.-Balt 529 

area (Figure 1a; Figure S2.3-7), rather than broad plumes spanning the length of the Chesapeake 530 

Bay as would be expected if the Chesapeake was the excess H2Ov source. The most intense 531 

plume of excess H2Ov observed on 27 February 2015 was in fact upwind of the Chesapeake Bay 532 

(Figure 1a). We note again that the urban H2Ov excess signal is often correlated temporally and 533 

spatially with anthropogenic activities, as demonstrated by the combustion product correlation 534 

plots for most of the flights in D.C.-Balt (Figure 5; Figure S5). Additionally, an urban H2Ov 535 

excess signal has been observed downwind of Indianapolis (Figure 6; Figures S2.1-2), in the 536 

absence of significant bodies of water. Relative to D.C.-Balt, Indianapolis is a meteorologically 537 

simple environment, and the nearest body of water, Lake Michigan, is over 200 km north of the 538 

city. 539 

 540 

3.3.3. Urban-Rural Energy Balance Differences 541 

Our estimates indicate that the combined emissions from combustion sources and cooling 542 

towers at most account for approximately half of the observed enhancement in H2Ov mole 543 

fractions in the outflow from D.C.-Balt and Indianapolis. Additionally, we infer from our 544 

observations that nearby bodies of water did not contribute to the observed H2Ov enhancement in 545 
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the D.C.-Balt or Indianapolis outflows. Additional sources of urban-derived H2Ov must have 546 

contributed to the enhancement in urban H2Ov outflow on the days when an elevated urban H2Ov 547 

signal was observed. High latent heat fluxes have been reported within urban areas, particularly 548 

following precipitation events, by several urban energy balance studies [Oke, 1979; Kalanda et 549 

al., 1980; Oke and McCaughey, 1983; Grimmond, 1992; Oke et al., 1992; Offerle et al., 2006; 550 

Ward et al., 2013; Ramamurthy et al., 2014; Ao et al., 2016]. Rapid urban evaporation, providing 551 

there is available moisture, can result from the oasis effect, a local or microscale advection 552 

process that occurs when warmer or drier air is advected from above an impervious surface to a 553 

moist and/or porous surface creating a large moisture gradient, initiating faster rates of 554 

evaporation and snowmelt [Oke, 1979; Bengtsson and Westerström, 1992; Neumann and Marsh, 555 

1998; Moriwaki and Kanda, 2004]. The northeastern United States received significant amounts 556 

of snow and rain throughout the WINTER campaign. Over the one month of Purdue and UMD 557 

mass balance flights (13 February to 12 March 2015), the D.C.-Balt area received approximately 558 

101 mm of precipitation (reported by Washington National and Baltimore-Washington 559 

International Airports). From 1 January to 12 March 2015 (date of last D.C.-Balt mass balance 560 

flight), the D.C.-Balt area received approximately 29 mm more precipitation than average (snow 561 

accumulation is converted to snow water equivalent). The oasis effect could be a contributor to  562 

the observed urban H2Ov exces signals. We note that our observations indicate that prior 563 

precipitation does not necessarily lead to an observable urban H2Ov excess signal. Similar 564 

amounts of snow fell in D.C.-Balt prior to all flight days, including days when an urban H2Ov 565 

excess signal was not observed (Table S1). While our measurements do not allow us to comment 566 

on the conditions impacting urban evaporation rates, other studies have shown that wintertime 567 

urban latent heat fluxes are sensitive to the physical state and availability of water on and within 568 

impervious and natural land cover [Offerle et al., 2006; Lemonsu et al., 2008; Leroyer et al., 569 

2010; Bergeron and Strachan, 2012]. 570 

In addition to being influenced by micro- and local scale advection processes, rates of 571 

evaporation and urban snowmelt can be influenced by large anthropogenic sensible heat fluxes in 572 

areas where space-heating occurs [Bengtsson and Westerström, 1992; Grimmond, 1992; Sailor, 573 

2011; Bergeron and Strachan, 2012]. It is possible that anthropogenic heat fluxes during the 574 

D.C.-Balt flights were significant considering the sub-zero temperatures (Table 2) and space 575 

heating that would be required. Urban snowmelt has also been shown to be influenced by 576 
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longwave radiation emitted from buildings with high emissivity values, and the relatively lower 577 

albedo of the surrounding urban surfaces [Lemonsu et al., 2008; Leroyer et al., 2010; Bergeron 578 

and Strachan, 2012]. Urban snow typically is cleared from parking lots, roads, and sidewalks 579 

and gathered in large piles [Järvi et al., 2014], where it can become packed and mixed with 580 

gravel and dirt, significantly lowering its albedo [Bengtsson and Westerström, 1992; Ho and 581 

Valeo, 2005]. The effect of road salt on evaporation within cities is complex. Road salt helps to 582 

melt ice and snow on roadways by decreasing the freezing point of water, but the resulting salt-583 

meltwater solution has a vapor pressure lower than that of pure water.  584 

 At present, our measurements cannot explain why the urban H2Ov excess signal is 585 

observed on some days, but not others. Our estimates indicate that combustion and cooling tower 586 

emissions cannot entirely account for the magnitude of the observed urban H2Ov signals. Indeed, 587 

if combustion and cooling tower emissions were dominant sources, we would expect elevated 588 

urban H2Ov mole fractions to be observed on every flight. But this is not the case for the D.C.-589 

Balt flight days on 19, 23, and 25 February 2015 when an elevated urban H2Ov signal was not 590 

observed (Figure S4). If enhanced urban snowmelt and evaporation is widespread, i.e. on the 591 

city-scale, it could be a dominant urban H2Ov excess source. It is likely that some combination of 592 

abundant moisture, anthropogenic heat flux, radiative properties of urban surfaces, and local-593 

scale advection processes resulted in the urban areas acting as sources of indirect anthropogenic 594 

H2Ov. Enhanced rates of urban evaporation and snowmelt could be responsible for the sometimes 595 

spatially offset urban H2Ov plume relative to the plumes of other GHGs (Figure 6 and Figure 596 

S5c). For example, emissions of CO2 and CH4 from power plants, transportation, natural gas 597 

distribution networks, and landfills are concentrated at the center of Indianapolis [Cambaliza et 598 

al., 2014], but significant advection-assisted evaporation could occur along the highways and 599 

residential areas surrounding the urban center. Bergeron and Strachan [2012] report different 600 

wintertime H2Ov emission responses from urban and suburban tower sites within 18 km of one 601 

another in Montreal. Our measurements allow for city-wide estimates of urban H2Ov excess 602 

emissions relative to rural areas. To determine if rapid evaporation and snowmelt is a dominant 603 

contributor to the urban H2Ov excess signal on the city-scale, future studies should conduct 604 

mobile measurements of urban-rural humidity differences [Chandler, 1967; Kopec, 1973; 605 

Bornstein and Tam, 1977; Sisterson and Dirks, 1978; Richards, 2005] simultaneously with local-606 
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scale measurements of snowmelt/evaporation and energy balance within and outside the urban 607 

area.  608 

3.3.4. Impacts of Elevated H2Ov on the Urban Heat Island 609 

Radiative forcing by anthropogenic GHG emissions is often considered in terms of global 610 

temperature increase. But the question remains as to whether the combined effects of elevated 611 

CO2, CH4, and H2Ov can impact the intensity of the daytime UHI. On average, the air advected 612 

out of the D.C.-Balt area was elevated in CO2, CH4, and H2Ov, by 4 ppm, 26 ppb, and 0.43 mmol 613 

mol-1, respectively, on days when an urban H2Ov excess signal was observed. Past studies have 614 

considered the impact of elevated urban GHG mole fractions on UHI intensity [Oke et al., 1991; 615 

Holmer and Eliasson, 1999; McCarthy et al., 2010]. For some of these studies, H2Ov [Holmer 616 

and Eliasson, 1999] or CO2 [McCarthy et al., 2010] were considered individually, or the focus 617 

was on simulating the nighttime UHI [Oke et al., 1991; Holmer and Eliasson, 1999]. 618 

The impact of enhanced urban GHG mole fractions on UHI intensity was assessed 619 

through idealized experiments using the Rapid Radiative Transfer Model (RRTM; methods 620 

discussed in the SI). Our calculations from RRTM show that on all five days the urban 621 

enhancement in CO2 and CH4 mole fractions had a negligible impact on the longwave radiation 622 

budget. McCarthy et al. [2010] show that the UHI intensity of megacities are positively 623 

influenced in the hypothetical scenario of increasing the global atmospheric CO2 mole fraction to 624 

645 ppm. Their analysis, however, is extreme in comparison to our simulation of the relative 625 

impact, which used the average observed urban enhancement in CO2 mole fraction, 4 ppm, for a 626 

total of 412 ppm CO2 well-mixed throughout the D.C.-Balt boundary layer. Enhanced H2Ov had 627 

a larger, but still minimal, impact on the longwave radiation budget than CO2 and CH4. Relative 628 

to the control scenario, elevated H2Ov mole fractions produced a cooling of roughly -0.1oC day-1 629 

at the top of the boundary layer, and a comparable warming of 0.1oC day-1 at the surface (Figure 630 

S8). These values are small, but could contribute to the average afternoon UHI of ~1.5oC 631 

observed in Washington, D.C. in winter by 6-7% at the surface [Hicks et al., 2010]. Absorption 632 

of shortwave radiation (warming) by H2Ov during the daytime is less in magnitude than 633 

longwave cooling, thus producing a net cooling within the boundary layer during the day that is 634 

less than -0.1oC day-1. Holmer and Eliasson [1999] also report competing impacts from elevated 635 

urban humidity on UHI intensity, which result in a net cooling effect. The small GHG-induced 636 
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radiative impacts in the urban plume suggested by these calculations are consistent with results 637 

from previous studies [Oke et al., 1991; Holmer and Eliasson, 1999]. 638 

  639 
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4. Conclusions 640 

Our wintertime airborne case studies around D.C.-Balt and Indianapolis reveal instances 641 

of significant urban emissions of H2Ov that result in H2Ov mole fractions downwind of the urban 642 

area to be in excess of rural H2Ov mole fractions. On flight days when an elevated H2Ov signal 643 

was observed, the emission rate of excess urban H2Ov ranged between 1.6 (±0.66) × 104 – 1.7 644 

(±0.81) × 105 and 2.1 (±1.2) × 104 – 3.5 (±1.4) × 104 kg s-1 for D.C.-Balt and Indianapolis, 645 

respectively. The emissions of excess urban H2Ov contributed between 1.5-8.4% to the total flow 646 

of atmospheric boundary layer H2Ov out of the urban areas. Our observations of urban H2Ov 647 

excess occurred during times of the year when transpiration rates were likely very low. 648 

Furthermore, because of the low temperatures associated with winter, saturation vapor pressure 649 

is lower than in summer months, and urban H2Ov excess signals are easier to observe relative to 650 

the noise, or natural variability in H2Ov mole fractions. 651 

To our knowledge this is the first study to report elevated H2Ov mole fractions downwind 652 

of an urban area using airborne platforms during daytime, and which has shown city-wide H2Ov 653 

excess, rather than local scale observations. Previous urban-rural humidity studies employed 654 

mobile [Chandler, 1967; Kopec, 1973; Richards, 2005] and airborne platforms [Bornstein and 655 

Tam, 1977; Sisterson and Dirks, 1978] to traverse larger rural and urban areas, but none reported 656 

elevated moisture levels downwind of cities during midday. Studies of urban-rural humidity 657 

gradients and energy balance studies typically employ meteorological and eddy covariance 658 

towers, where the locations of rural stations are purposely chosen so that they are not influenced 659 

by a nearby urban center. Urban areas are heterogeneous, and thus tower location would be very 660 

important.  661 

A combination of sources and conditions was likely responsible for the observed urban 662 

H2Ov signal reported here. Using CO2 emissions estimates and a combustion fuel consumption-663 

weighted H2Ov:CO2 ratio, it was estimated that combustion sources contributed a maximum of 664 

9.6% to the elevated urban H2Ov signal, and only contributed a maximum of 0.32% of the total 665 

transport of boundary layer H2Ov through the study areas. We have shown that contributions 666 

from evaporative cooling towers when energy generation facilities are operating at maximum 667 

capacities could account for  approximately 2% to 43% of the observed urban H2Ov excess 668 

signals. A dominant source contributing to the urban H2Ov signal could be rapid urban snowmelt 669 
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and evaporation either from increased wintertime anthropogenic heat flux and/or advection-670 

assisted evaporation. We note that prior precipitation events do not necessarily lead to observable 671 

urban H2Ov signals. Combining mobile city-scale H2Ov measurements with micro- and local-672 

scale measurements of snowmelt, evaporation, and energy fluxes at several rural and urban sites 673 

could be a next step in directly determining the relative contribution of these processes to the 674 

urban H2Ov excess signal.  675 

We quantified the impact of GHG radiative forcing on the intensity of the UHI using 676 

RRTM, and found that elevated urban mole fractions of H2Ov, CO2, and CH4 individually, and 677 

collectively, had small impacts on UHI intensity. At the surface, elevated urban mole fractions of 678 

H2Ov could be responsible for 6-7% of UHI intensity. However, this surface warming is 679 

counteracted by longwave cooling at the top of the boundary layer. Atmospheric boundary layer 680 

effects caused by urban H2Ov emissions could be significant, and include urban area-modified 681 

downwind cloud cover and weather [Mölders and Olson, 2004; Rosenfeld et al., 2008; Trusilova 682 

et al., 2008; Twohy et al., 2009; Kourtidis et al., 2015]. In addition, recent findings indicate that 683 

aerosol chemistry and optical properties could be modified in the downwind region of the urban 684 

environment [Twohy et al., 2009; Carlton and Turpin, 2013; Hodas et al., 2014; Guo et al., 685 

2015; Rindelaub et al., 2015].  686 
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Tables 1026 
 1027 

Flight 

date 

Precipitation 
amount in 

week prior to 
flight 

Max enhancement in 
urban H2Ov mole fraction 

relative to background 
[mmol mol-1] 

ERUrban (±1σ) 
[kg H2Ov s-1] 

ERUrban:ERTotal 

8 Nov 

2012* 
4 mm 0.72 2.1 (±1.2) × 104 

 
2.6% 

25 Nov 

2014* 
54 mm 0.65 3.5 (±1.4) × 104 

 
3.0% 

13 Feb 

2015† 
3 mm 0.31 1.6 (±0.66) × 104  1.7% 

20 Feb 

2015† 
14 mm 0.24 

6.5 (±2.8) × 104 

 
8.4% 

27 Feb 

2015† 
25 mm 1.49 

1.7 (±0.81) × 105 

 
5.9% 

9 Mar 

2015† 
23 mm 1.09 

3.4 (±1.6) × 104 

 
1.5% 

12 Mar 

2015† 
23 mm 0.78 

3.6 (±1.6) × 104 

 
3.1% 

 1028 
Table 1. Urban H2Ov emission rate (ERUrban) estimates, maximum observed urban H2Ov 1029 
enhancement, and percent contribution of urban-derived H2Ov to the total transport of 1030 
atmospheric boundary layer H2Ov (ERTotal) out of the study sites for days when an elevated urban 1031 
H2Ov signal was observed. Also included is the precipitation amount reported in the seven days 1032 
prior to the flight days by the Indianapolis International Airport for Indianapolis flights, and the 1033 
average values reported by Washington National and Baltimore-Washington International 1034 
Airports for D.C.-Balt flights. Precipitation amounts for snow events are reported in snow water 1035 
equivalent. 1036 
* Indianapolis 1037 
† D.C.-Balt 1038 
  1039 
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Flight date 
(low/high 

surface temp) 

ERCombust 

[kg H2Ov s-1] 

ERCombust:ERUrban 

[%] 

ERCombust:ERTotal 

[%] 

ERMaxCT  

[kg H2Ov s-1] 

ERMaxCT:ERUrban 

[%] 

ERMaxCT:ERTotal 

[%] 

8 Nov 2012* 
(-2.8oC/8.9oC) 3.7 × 102 1.8% 0.046% 6.7 × 102 3.2% 0.084% 

25 Nov 2014* 
(-3.3oC/2.2oC) 3.2 × 102 0.9% 0.027% 6.7 × 102 1.9% 0.056% 

13 Feb 2015† 
(-10.3oC/-1.9oC) 1.5 × 103 9.6% 0.17% 7.4 × 103 43% 0.75% 

20 Feb 2015† 
(-16.1oC/-6.7oC) 2.5 × 103 3.9% 0.32% 7.4 × 103 11% 0.87% 

27 Feb 2015† 
(-6.4oC/2.5oC) 1.7 × 103 1.0% 0.057% 7.4 × 103 4.4% 0.25% 

9 Mar 2015† 
(0.8oC/16.4oC) 6.7 × 102 2.0% 0.028% 7.4 × 103 21% 0.31% 

12 Mar 2015† 
(3.3oC/14.4oC) 3.8 × 102 1.1% 0.029% 7.4 × 103 19% 0.56% 

 1040 
Table 2. Combustion-derived H2Ov emission rate (ERCombust) and maximum cooling tower 1041 
emission rate (ERMaxCT) estimates for days when an urban H2Ov excess signal was observed, as 1042 
well as the contribution of ERCombust and ERMaxCT to ERUrban (urban H2Ov excess emission rate) 1043 
and ERTotal (total boundary layer H2Ov flow through study site). Also provided are the  low and 1044 
high surface temperatures for these days reported by the Indianapolis International Airport for 1045 
Indianapolis flights or the Washington National and Baltimore-Washington International 1046 
Airports for D.C.-Balt flights. 1047 
* Indianapolis 1048 
† D.C.-Balt  1049 
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Figure Captions 1050 

Figure 1. The ALAR (a) flight path and (b) altitude time series on 27 February 2015. After 1051 
takeoff from Manassas, VA, a vertical profile (VP1) was conducted, followed by an upwind 1052 
transect (UW). Three downwind transects (DW1-3) were flown along identical waypoints 1053 
perpendicular to the mean wind at 390 m, 680 m, and 930 m above sea level. Because the 1054 
upwind and lowest downwind transects were conducted at the same altitude (b), only the 1055 
downwind data along the lowest downwind transect is shown here for comparison purposes. A 1056 
second vertical profile (VP2) was flown within the urban plume during the second downwind 1057 
transect. Refueling took place approximately midway through the final downwind transect. Map 1058 
source: Esri, USGS, NOAA, 2010 U.S. Census. Population density is distributed by the U.S. 1059 
Census Bureau’s Populated Places definitions. 1060 

Figure 2. Background H2Ov mole fractions (cyan) are defined from air sampled along the lateral 1061 
edges of the downwind transects where mole fractions are relatively constant. Observed H2Ov 1062 
mole fractions for 27 February 2015 are colored by location and altitude (in meters above sea 1063 
level). Vertical dotted lines indicate the transitions between rural- and urban-influenced air. 1064 

Figure 3. Calculated urban H2Ov excess flux (Equation 1) at each sampling point downwind of 1065 
D.C.-Balt on 27 February 2015. Boundary layer height (zi), defined as the altitude corresponding 1066 
to the greatest change in dθ/dz, is indicated by the horizontal dashed line. Vertical dotted lines 1067 
indicate the transitions between rural- and urban-influenced air. 1068 

Figure 4. Urban plume profiles of (a) H2Ov, (b) CO2, (c) CH4, (d) NO2, and (e) aerosol observed 1069 
downwind of D.C.-Balt on 27 February 2015. Transects are colored by location and altitude (in 1070 
meters above sea level (msl)). (f) Comparison of aerosol number concentration along the upwind 1071 
(390 msl in red) and lowest downwind transect (390 msl in black). (g) Comparison of the 1072 
average normalized aerosol size distribution along the upwind transect and sections of the lowest 1073 
downwind transect (sections identified in (f)). 1074 

Figure 5. Atmospheric correlation of the combustion product enhancements: H2Ov, CO2, and 1075 
NO2 on 27 February 2015. The data shown are background-subtracted enhancements of the 1076 
atmospheric species measured within the boundary layer downwind of D.C.-Balt. The Pearson 1077 
correlation coefficient (r) for the linear relationship of CO2 and H2Ov is r = 0.83. 1078 

Figure 6. Urban plumes of (a) H2Ov, (b) CO2, and (c) CH4 observed downwind of Indianapolis 1079 
on 8 November 2012. Urban plumes of (d) H2Ov, (e) CO2, and (f) CH4 observed downwind of 1080 
Indianapolis on 25 November 2014. Transects are colored by altitude (meters above ground level 1081 
(m agl)). Indianapolis city boundaries are indicated by the vertical dashed lines. 1082 

  1083 
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 1084 

Figure 4. The ALAR (a) flight path and (b) altitude time series on 27 February 2015. After 1085 
takeoff from Manassas, VA, a vertical profile (VP1) was conducted, followed by an upwind 1086 
transect (UW). Three downwind transects (DW1-3) were flown along identical waypoints 1087 
perpendicular to the mean wind at 390 m, 680 m, and 930 m above sea level. Because the 1088 
upwind and lowest downwind transects were conducted at the same altitude (b), only the 1089 
downwind data along the lowest downwind transect is shown here for comparison purposes. A 1090 
second vertical profile (VP2) was flown within the urban plume during the second downwind 1091 
transect. Refueling took place approximately midway through the final downwind transect. Map 1092 
source: Esri, USGS, NOAA, 2010 U.S. Census. Population density is distributed by the U.S. 1093 
Census Bureau’s Populated Places definitions.  1094 
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 1095 

Figure 5. Background H2Ov mole fractions (cyan) are defined from air sampled along the lateral 1096 
edges of the downwind transects where mole fractions are relatively constant. Observed H2Ov 1097 
mole fractions for 27 February 2015 are colored by location and altitude (in meters above sea 1098 
level). Vertical dotted lines indicate the transitions between rural- and urban-influenced air. 1099 
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 1101 

Figure 6. Calculated urban H2Ov excess flux (Equation 1) at each sampling point downwind of 1102 
D.C.-Balt on 27 February 2015. Boundary layer height (zi), defined as the altitude corresponding 1103 
to the greatest change in dθ/dz, is indicated by the horizontal dashed line. Vertical dotted lines 1104 
indicate the transitions between rural- and urban-influenced air. 1105 
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 1107 

Figure 4. Urban plume profiles of (a) H2Ov, (b) CO2, (c) CH4, (d) NO2, and (e) aerosol observed 1108 
downwind of D.C.-Balt on 27 February 2015. Transects are colored by location and altitude (in 1109 
meters above sea level (msl)). (f) Comparison of aerosol number concentration along the upwind 1110 
(390 msl in red) and lowest downwind transect (390 msl in black). (g) Comparison of the 1111 
average normalized aerosol size distribution along the upwind transect and sections of the lowest 1112 
downwind transect (sections identified in (f)). 1113 
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 1115 

Figure 5. Atmospheric correlation of the combustion product enhancements: H2Ov, CO2, and 1116 
NO2 on 27 February 2015. The data shown are background-subtracted enhancements of the 1117 
atmospheric species measured within the boundary layer downwind of D.C.-Balt. The Pearson 1118 
correlation coefficient (r) for the linear relationship of CO2 and H2Ov is r = 0.83. 1119 
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 1121 

Figure 6. Urban plumes of (a) H2Ov, (b) CO2, and (c) CH4 observed downwind of Indianapolis 1122 
on 8 November 2012. Urban plumes of (d) H2Ov, (e) CO2, and (f) CH4 observed downwind of 1123 
Indianapolis on 25 November 2014. Transects are colored by altitude (meters above ground level 1124 
(m agl)). Indianapolis city boundaries are indicated by the vertical dashed lines. 1125 
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